Skip to main content
Log in

An additive theory for finite elastic–plastic deformations of the micropolar continuous media

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this paper, the method of additive plasticity at finite deformations is generalized to the micropolar continuous media. It is shown that the non-symmetric rate of deformation tensor and gradient of gyration vector could be decomposed into elastic and plastic parts. For the finite elastic deformation, the micropolar hypo-elastic constitutive equations for isotropic micropolar materials are considered. Concerning the additive decomposition and the micropolar hypo-elasticity as the basic tools, an elastic–plastic formulation consisting of an arbitrary number of internal variables and arbitrary form of plastic flow rule is derived. The localization conditions for the micropolar material obeying the developed elastic–plastic constitutive equations are investigated. It is shown that in the proposed formulation, the rate of skew-symmetric part of the stress tensor does not exhibit any jump across the singular surface. As an example, a generalization of the Drucker–Prager yield criterion to the micropolar continuum through a generalized form of the J 2-flow theory incorporating isotropic and kinematic hardenings is introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Eringen, A.C.: Theory of micropolar elasticity. In: Leibowitz, H. (ed.) Fracture, vol. II, pp. 621–629. Academic Press, New York (1968)

    Google Scholar 

  2. Kafadar C.B., Eringen A.C.: Micropolar media, Pert I. Int. J. Eng. Sci. 9, 271–307 (1971)

    Article  Google Scholar 

  3. Eringen, A.C., Kafadar, C.B.: Polar field theories. In: Eringen, A.C. (ed.) Continuum Physics, vol. IV, pp. 1–73, Academic Press, New York (1976)

    Google Scholar 

  4. Truesdell, C.A., Toupin, R.: The classical field theories of mechanics. In: Flugge, S. (ed.) Handbuch der Physik, vol. III/1, Springer, Heidelberg (1960)

    Google Scholar 

  5. Truesdell, C.A., Noll, W.: The non-linear field theories of mechanics. In: Flugge, S. (ed.) Handbuch der Physik, vol. III/3, Springer, Heidelberg (1965)

  6. Steinmann P.: A micropolar theory of finite deformation and finite rotation multiplicative elastoplasticity. Int. J. Solids Struct. 31(8), 1063–1084 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  7. Mühlhaus H.B., Vardoulakis I.: The thickness of shear bands in granular materials. Geotechnique 37, 271–283 (1987)

    Article  Google Scholar 

  8. Steinmann, P., Willam, K.: Localization within the framework of micropolar elasto-plasticity. In: Bruller, O., Mannl, V., Najar, J. (eds.) Advances in continuum mechanics. Springer, Heidelberg (1991)

    Google Scholar 

  9. De Borst R.: A generalization of J 2-flow theory for polar continua. Comp. Meth. Appl. Mech. Eng. 103, 347–362 (1993)

    Article  MATH  Google Scholar 

  10. Iordache M.-M., Willam K.: Localization failure analysis in elastoplastic Cosserat continua. Comp. Meth. Appl. Mech. Eng. 151, 559–586 (1998)

    Article  MATH  Google Scholar 

  11. Forest S., Sievert R.: Elastoviscoplastic constitutive frameworks for generalized continua. Acta Mech. 160, 71–111 (2003)

    Article  MATH  Google Scholar 

  12. Sharbati E., Naghdabadi R.: Computational aspects of the Cosserat finite element analysis of localization phenomena. Comp. Mat. Sci. 38, 303–315 (2006)

    Article  Google Scholar 

  13. Suiker A.S.J., de Borst R., Chang C.S.: Micro-mechanical modeling of granular material. Part 1: Derivation of a second-gradient micro-polar constitutive theory. Acta Mech. 149, 161–180 (2001)

    Article  MATH  Google Scholar 

  14. Grammenoudis P., Tsakmakis C.: Hardening rules for finite deformation micropolar plasticity: Restrictions imposed by the second law of thermodynamics and the postulate of Il’iushin. Cont. Mech. Thermodyn. 13, 325–363 (2001)

    MATH  MathSciNet  Google Scholar 

  15. Grammenoudis P., Tsakmakis C.: Finite element implementation of large deformation micropolar plasticity exhibiting isotropic and kinematic hardening effects. Int. J. Numer. Methods. Eng. 62, 1691–1720 (2005)

    Article  MATH  Google Scholar 

  16. Grammenoudis P., Tsakmakis C.: Micropolar plasticity theories and their classical limits. Part I: resulting model. Acta Mech. 189, 151–175 (2007)

    Article  MATH  Google Scholar 

  17. Grammenoudis P., Sator C., Tsakmakis C.: Micropolar plasticity theories and their classical limits. Part II: comparison of responses predicted by the limiting and a standard classical model. Acta Mech. 189, 177–191 (2007)

    Article  MATH  Google Scholar 

  18. Tejchman J.: Influence of a characteristic length on shear zone formation in hypoplasticity with different enhancements. Comput Geotechnics 31, 595–611 (2004)

    Article  Google Scholar 

  19. Tejchman J., Bauer E.: Fe-simulations of a direct and a true simple shear test within a polar hypoplasticity. Comput Geotechnics 32, 1–16 (2005)

    Article  Google Scholar 

  20. Tejchman J., Wu W.: Modeling of textural anisotropy in granular materials with stochastic micropolar hypoplasticity. Int. J. Nonlin. Mech. 42, 882–894 (2007)

    Article  Google Scholar 

  21. Ramezani S., Naghdabadi R.: Energy pairs in the micropolar continuum mechanics. Int. J. Solids Struct. 44, 4810–4818 (2007)

    Article  MATH  Google Scholar 

  22. Zheng Q.S.: Theory of representations for tensor functions. Appl. Mech. Rev. 47, 554–587 (1994)

    Article  Google Scholar 

  23. Lee E.H.: Elastic–plastic deformation at finite strains. J. Appl. Mech. 36, 1–6 (1969)

    MATH  Google Scholar 

  24. Green A.E., Naghdi P.M.: A general theory of an elastic–plastic continuum. Arch. Rat. Mech. Anal. 18, 251–281 (1965)

    Article  MathSciNet  Google Scholar 

  25. Nemat-Nasser S.: On finite deformation elasto-plasticity. Int. J. Solids Struct. 18, 857–872 (1982)

    Article  MATH  Google Scholar 

  26. Nemat-Nasser S.: Decomposition of strain measures and their rates in finite deformation elasto-plasticity. Int. J. Solids Struct. 15, 155–166 (1979)

    Article  MATH  Google Scholar 

  27. Dafalias Y.: Plastic spin: necessity or redundancy?. Int. J. Plast. 14(9), 909–931 (1998)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Naghdabadi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramezani, S., Naghdabadi, R. & Sohrabpour, S. An additive theory for finite elastic–plastic deformations of the micropolar continuous media. Acta Mech 206, 81–93 (2009). https://doi.org/10.1007/s00707-008-0084-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-008-0084-9

Keywords

Navigation